vulkan_memory_allocator: Add allocation support for download types

Implements the allocator logic to handle download memory types. This
will try to use HOST_CACHED_BIT when available.
This commit is contained in:
ReinUsesLisp 2021-01-03 20:51:11 -03:00
parent 72541af3bc
commit 8f22f5470c
2 changed files with 91 additions and 55 deletions

View file

@ -5,7 +5,6 @@
#include <algorithm> #include <algorithm>
#include <bit> #include <bit>
#include <optional> #include <optional>
#include <tuple>
#include <vector> #include <vector>
#include "common/alignment.h" #include "common/alignment.h"
@ -27,7 +26,7 @@ struct Range {
} }
}; };
[[nodiscard]] u64 GetAllocationChunkSize(u64 required_size) { [[nodiscard]] u64 AllocationChunkSize(u64 required_size) {
static constexpr std::array sizes{ static constexpr std::array sizes{
0x1000ULL << 10, 0x1400ULL << 10, 0x1800ULL << 10, 0x1c00ULL << 10, 0x2000ULL << 10, 0x1000ULL << 10, 0x1400ULL << 10, 0x1800ULL << 10, 0x1c00ULL << 10, 0x2000ULL << 10,
0x3200ULL << 10, 0x4000ULL << 10, 0x6000ULL << 10, 0x8000ULL << 10, 0xA000ULL << 10, 0x3200ULL << 10, 0x4000ULL << 10, 0x6000ULL << 10, 0x8000ULL << 10, 0xA000ULL << 10,
@ -38,14 +37,28 @@ struct Range {
const auto it = std::ranges::lower_bound(sizes, required_size); const auto it = std::ranges::lower_bound(sizes, required_size);
return it != sizes.end() ? *it : Common::AlignUp(required_size, 4ULL << 20); return it != sizes.end() ? *it : Common::AlignUp(required_size, 4ULL << 20);
} }
[[nodiscard]] VkMemoryPropertyFlags MemoryUsagePropertyFlags(MemoryUsage usage) {
switch (usage) {
case MemoryUsage::DeviceLocal:
return VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
case MemoryUsage::Upload:
return VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
case MemoryUsage::Download:
return VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
}
UNREACHABLE_MSG("Invalid memory usage={}", usage);
return VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
}
} // Anonymous namespace } // Anonymous namespace
class MemoryAllocation { class MemoryAllocation {
public: public:
explicit MemoryAllocation(const Device& device_, vk::DeviceMemory memory_, explicit MemoryAllocation(const Device& device_, vk::DeviceMemory memory_,
VkMemoryPropertyFlags properties_, u64 allocation_size_, u32 type_) VkMemoryPropertyFlags properties, u64 allocation_size_, u32 type)
: device{device_}, memory{std::move(memory_)}, properties{properties_}, : device{device_}, memory{std::move(memory_)}, allocation_size{allocation_size_},
allocation_size{allocation_size_}, shifted_type{ShiftType(type_)} {} property_flags{properties}, shifted_memory_type{1U << type} {}
[[nodiscard]] std::optional<MemoryCommit> Commit(VkDeviceSize size, VkDeviceSize alignment) { [[nodiscard]] std::optional<MemoryCommit> Commit(VkDeviceSize size, VkDeviceSize alignment) {
const std::optional<u64> alloc = FindFreeRegion(size, alignment); const std::optional<u64> alloc = FindFreeRegion(size, alignment);
@ -68,17 +81,16 @@ public:
} }
[[nodiscard]] std::span<u8> Map() { [[nodiscard]] std::span<u8> Map() {
if (!memory_mapped_span.empty()) { if (memory_mapped_span.empty()) {
return memory_mapped_span; u8* const raw_pointer = memory.Map(0, allocation_size);
memory_mapped_span = std::span<u8>(raw_pointer, allocation_size);
} }
u8* const raw_pointer = memory.Map(0, allocation_size);
memory_mapped_span = std::span<u8>(raw_pointer, allocation_size);
return memory_mapped_span; return memory_mapped_span;
} }
/// Returns whether this allocation is compatible with the arguments. /// Returns whether this allocation is compatible with the arguments.
[[nodiscard]] bool IsCompatible(VkMemoryPropertyFlags wanted_properties, u32 type_mask) const { [[nodiscard]] bool IsCompatible(VkMemoryPropertyFlags flags, u32 type_mask) const {
return (wanted_properties & properties) && (type_mask & shifted_type) != 0; return (flags & property_flags) && (type_mask & shifted_memory_type) != 0;
} }
private: private:
@ -106,13 +118,13 @@ private:
return candidate; return candidate;
} }
const Device& device; ///< Vulkan device. const Device& device; ///< Vulkan device.
const vk::DeviceMemory memory; ///< Vulkan memory allocation handler. const vk::DeviceMemory memory; ///< Vulkan memory allocation handler.
const VkMemoryPropertyFlags properties; ///< Vulkan properties. const u64 allocation_size; ///< Size of this allocation.
const u64 allocation_size; ///< Size of this allocation. const VkMemoryPropertyFlags property_flags; ///< Vulkan memory property flags.
const u32 shifted_type; ///< Stored Vulkan type of this allocation, shifted. const u32 shifted_memory_type; ///< Shifted Vulkan memory type.
std::vector<Range> commits; ///< All commit ranges done from this allocation. std::vector<Range> commits; ///< All commit ranges done from this allocation.
std::span<u8> memory_mapped_span; ///< Memory mapped span. Empty if not queried before. std::span<u8> memory_mapped_span; ///< Memory mapped span. Empty if not queried before.
}; };
MemoryCommit::MemoryCommit(const Device& device_, MemoryAllocation* allocation_, MemoryCommit::MemoryCommit(const Device& device_, MemoryAllocation* allocation_,
@ -138,10 +150,9 @@ MemoryCommit::MemoryCommit(MemoryCommit&& rhs) noexcept
interval{rhs.interval}, span{std::exchange(rhs.span, std::span<u8>{})} {} interval{rhs.interval}, span{std::exchange(rhs.span, std::span<u8>{})} {}
std::span<u8> MemoryCommit::Map() { std::span<u8> MemoryCommit::Map() {
if (!span.empty()) { if (span.empty()) {
return span; span = allocation->Map().subspan(interval.first, interval.second - interval.first);
} }
span = allocation->Map().subspan(interval.first, interval.second - interval.first);
return span; return span;
} }
@ -157,25 +168,18 @@ MemoryAllocator::MemoryAllocator(const Device& device_)
MemoryAllocator::~MemoryAllocator() = default; MemoryAllocator::~MemoryAllocator() = default;
MemoryCommit MemoryAllocator::Commit(const VkMemoryRequirements& requirements, MemoryUsage usage) { MemoryCommit MemoryAllocator::Commit(const VkMemoryRequirements& requirements, MemoryUsage usage) {
const u64 chunk_size = GetAllocationChunkSize(requirements.size); // Find the fastest memory flags we can afford with the current requirements
const VkMemoryPropertyFlags flags = MemoryPropertyFlags(requirements.memoryTypeBits, usage);
// When a host visible commit is asked, search for host visible and coherent, otherwise search if (std::optional<MemoryCommit> commit = TryCommit(requirements, flags)) {
// for a fast device local type.
// TODO: Deduce memory types from usage in a better way
const bool host_visible = IsHostVisible(usage);
const VkMemoryPropertyFlags wanted_properties =
host_visible ? VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
: VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
if (std::optional<MemoryCommit> commit = TryAllocCommit(requirements, wanted_properties)) {
return std::move(*commit); return std::move(*commit);
} }
// Commit has failed, allocate more memory. // Commit has failed, allocate more memory.
// TODO(Rodrigo): Handle out of memory situations in some way like flushing to guest memory. // TODO(Rodrigo): Handle out of memory situations in some way like flushing to guest memory.
AllocMemory(wanted_properties, requirements.memoryTypeBits, chunk_size); AllocMemory(flags, requirements.memoryTypeBits, AllocationChunkSize(requirements.size));
// Commit again, this time it won't fail since there's a fresh allocation above. // Commit again, this time it won't fail since there's a fresh allocation above.
// If it does, there's a bug. // If it does, there's a bug.
return TryAllocCommit(requirements, wanted_properties).value(); return TryCommit(requirements, flags).value();
} }
MemoryCommit MemoryAllocator::Commit(const vk::Buffer& buffer, MemoryUsage usage) { MemoryCommit MemoryAllocator::Commit(const vk::Buffer& buffer, MemoryUsage usage) {
@ -190,33 +194,22 @@ MemoryCommit MemoryAllocator::Commit(const vk::Image& image, MemoryUsage usage)
return commit; return commit;
} }
void MemoryAllocator::AllocMemory(VkMemoryPropertyFlags wanted_properties, u32 type_mask, void MemoryAllocator::AllocMemory(VkMemoryPropertyFlags flags, u32 type_mask, u64 size) {
u64 size) { const u32 type = FindType(flags, type_mask).value();
const u32 type = [&] {
for (u32 type_index = 0; type_index < properties.memoryTypeCount; ++type_index) {
const auto flags = properties.memoryTypes[type_index].propertyFlags;
if ((type_mask & (1U << type_index)) && (flags & wanted_properties)) {
// The type matches in type and in the wanted properties.
return type_index;
}
}
UNREACHABLE_MSG("Couldn't find a compatible memory type!");
return 0U;
}();
vk::DeviceMemory memory = device.GetLogical().AllocateMemory({ vk::DeviceMemory memory = device.GetLogical().AllocateMemory({
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = nullptr, .pNext = nullptr,
.allocationSize = size, .allocationSize = size,
.memoryTypeIndex = type, .memoryTypeIndex = type,
}); });
allocations.push_back(std::make_unique<MemoryAllocation>(device, std::move(memory), allocations.push_back(
wanted_properties, size, type)); std::make_unique<MemoryAllocation>(device, std::move(memory), flags, size, type));
} }
std::optional<MemoryCommit> MemoryAllocator::TryAllocCommit( std::optional<MemoryCommit> MemoryAllocator::TryCommit(const VkMemoryRequirements& requirements,
const VkMemoryRequirements& requirements, VkMemoryPropertyFlags wanted_properties) { VkMemoryPropertyFlags flags) {
for (auto& allocation : allocations) { for (auto& allocation : allocations) {
if (!allocation->IsCompatible(wanted_properties, requirements.memoryTypeBits)) { if (!allocation->IsCompatible(flags, requirements.memoryTypeBits)) {
continue; continue;
} }
if (auto commit = allocation->Commit(requirements.size, requirements.alignment)) { if (auto commit = allocation->Commit(requirements.size, requirements.alignment)) {
@ -226,6 +219,40 @@ std::optional<MemoryCommit> MemoryAllocator::TryAllocCommit(
return std::nullopt; return std::nullopt;
} }
VkMemoryPropertyFlags MemoryAllocator::MemoryPropertyFlags(u32 type_mask, MemoryUsage usage) const {
return MemoryPropertyFlags(type_mask, MemoryUsagePropertyFlags(usage));
}
VkMemoryPropertyFlags MemoryAllocator::MemoryPropertyFlags(u32 type_mask,
VkMemoryPropertyFlags flags) const {
if (FindType(flags, type_mask)) {
// Found a memory type with those requirements
return flags;
}
if (flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) {
// Remove host cached bit in case it's not supported
return MemoryPropertyFlags(type_mask, flags & ~VK_MEMORY_PROPERTY_HOST_CACHED_BIT);
}
if (flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) {
// Remove device local, if it's not supported by the requested resource
return MemoryPropertyFlags(type_mask, flags & ~VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
}
UNREACHABLE_MSG("No compatible memory types found");
return 0;
}
std::optional<u32> MemoryAllocator::FindType(VkMemoryPropertyFlags flags, u32 type_mask) const {
for (u32 type_index = 0; type_index < properties.memoryTypeCount; ++type_index) {
const VkMemoryPropertyFlags type_flags = properties.memoryTypes[type_index].propertyFlags;
if ((type_mask & (1U << type_index)) && (type_flags & flags)) {
// The type matches in type and in the wanted properties.
return type_index;
}
}
// Failed to find index
return std::nullopt;
}
bool IsHostVisible(MemoryUsage usage) noexcept { bool IsHostVisible(MemoryUsage usage) noexcept {
switch (usage) { switch (usage) {
case MemoryUsage::DeviceLocal: case MemoryUsage::DeviceLocal:

View file

@ -92,13 +92,22 @@ public:
private: private:
/// Allocates a chunk of memory. /// Allocates a chunk of memory.
void AllocMemory(VkMemoryPropertyFlags wanted_properties, u32 type_mask, u64 size); void AllocMemory(VkMemoryPropertyFlags flags, u32 type_mask, u64 size);
/// Tries to allocate a memory commit. /// Tries to allocate a memory commit.
std::optional<MemoryCommit> TryAllocCommit(const VkMemoryRequirements& requirements, std::optional<MemoryCommit> TryCommit(const VkMemoryRequirements& requirements,
VkMemoryPropertyFlags wanted_properties); VkMemoryPropertyFlags flags);
const Device& device; ///< Device handler. /// Returns the fastest compatible memory property flags from a wanted usage.
VkMemoryPropertyFlags MemoryPropertyFlags(u32 type_mask, MemoryUsage usage) const;
/// Returns the fastest compatible memory property flags from the wanted flags.
VkMemoryPropertyFlags MemoryPropertyFlags(u32 type_mask, VkMemoryPropertyFlags flags) const;
/// Returns index to the fastest memory type compatible with the passed requirements.
std::optional<u32> FindType(VkMemoryPropertyFlags flags, u32 type_mask) const;
const Device& device; ///< Device handle.
const VkPhysicalDeviceMemoryProperties properties; ///< Physical device properties. const VkPhysicalDeviceMemoryProperties properties; ///< Physical device properties.
std::vector<std::unique_ptr<MemoryAllocation>> allocations; ///< Current allocations. std::vector<std::unique_ptr<MemoryAllocation>> allocations; ///< Current allocations.
}; };