yuzu/src/core/core_cpu.cpp
Fernando Sahmkow 40cd4df584 CpuCore: Clear exclusive state after doing a run in dynarmic.
This commit corrects an error in which a Core could remain with an
exclusive state after running, leaving space for possible race
conditions between changing cores.
2019-12-05 18:08:59 -04:00

127 lines
3.4 KiB
C++

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <condition_variable>
#include <mutex>
#include "common/logging/log.h"
#ifdef ARCHITECTURE_x86_64
#include "core/arm/dynarmic/arm_dynarmic.h"
#endif
#include "core/arm/exclusive_monitor.h"
#include "core/arm/unicorn/arm_unicorn.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/lock.h"
#include "core/settings.h"
namespace Core {
void CpuBarrier::NotifyEnd() {
std::unique_lock lock{mutex};
end = true;
condition.notify_all();
}
bool CpuBarrier::Rendezvous() {
if (!Settings::values.use_multi_core) {
// Meaningless when running in single-core mode
return true;
}
if (!end) {
std::unique_lock lock{mutex};
--cores_waiting;
if (!cores_waiting) {
cores_waiting = NUM_CPU_CORES;
condition.notify_all();
return true;
}
condition.wait(lock);
return true;
}
return false;
}
Cpu::Cpu(System& system, ExclusiveMonitor& exclusive_monitor, CpuBarrier& cpu_barrier,
std::size_t core_index)
: cpu_barrier{cpu_barrier}, global_scheduler{system.GlobalScheduler()},
core_timing{system.CoreTiming()}, core_index{core_index} {
#ifdef ARCHITECTURE_x86_64
arm_interface = std::make_unique<ARM_Dynarmic>(system, exclusive_monitor, core_index);
#else
arm_interface = std::make_unique<ARM_Unicorn>(system);
LOG_WARNING(Core, "CPU JIT requested, but Dynarmic not available");
#endif
scheduler = std::make_unique<Kernel::Scheduler>(system, *arm_interface, core_index);
}
Cpu::~Cpu() = default;
std::unique_ptr<ExclusiveMonitor> Cpu::MakeExclusiveMonitor(
[[maybe_unused]] Memory::Memory& memory, [[maybe_unused]] std::size_t num_cores) {
#ifdef ARCHITECTURE_x86_64
return std::make_unique<DynarmicExclusiveMonitor>(memory, num_cores);
#else
// TODO(merry): Passthrough exclusive monitor
return nullptr;
#endif
}
void Cpu::RunLoop(bool tight_loop) {
// Wait for all other CPU cores to complete the previous slice, such that they run in lock-step
if (!cpu_barrier.Rendezvous()) {
// If rendezvous failed, session has been killed
return;
}
Reschedule();
// If we don't have a currently active thread then don't execute instructions,
// instead advance to the next event and try to yield to the next thread
if (Kernel::GetCurrentThread() == nullptr) {
LOG_TRACE(Core, "Core-{} idling", core_index);
core_timing.Idle();
} else {
if (tight_loop) {
arm_interface->Run();
} else {
arm_interface->Step();
}
// We are stopping a run, exclusive state must be cleared
arm_interface->ClearExclusiveState();
}
core_timing.Advance();
Reschedule();
}
void Cpu::SingleStep() {
return RunLoop(false);
}
void Cpu::PrepareReschedule() {
arm_interface->PrepareReschedule();
}
void Cpu::Reschedule() {
// Lock the global kernel mutex when we manipulate the HLE state
std::lock_guard lock(HLE::g_hle_lock);
global_scheduler.SelectThread(core_index);
scheduler->TryDoContextSwitch();
}
void Cpu::Shutdown() {
scheduler->Shutdown();
}
} // namespace Core