yuzu/src/core/hle/kernel/svc.cpp
Lioncash 7c9644646f
general: Make formatting of logged hex values more straightforward
This makes the formatting expectations more obvious (e.g. any zero padding specified
is padding that's entirely dedicated to the value being printed, not any pretty-printing
that also gets tacked on).
2018-05-02 09:49:36 -04:00

926 lines
34 KiB
C++

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cinttypes>
#include <iterator>
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/string_util.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/client_session.h"
#include "core/hle/kernel/event.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/object_address_table.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_wrap.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
namespace Kernel {
/// Set the process heap to a given Size. It can both extend and shrink the heap.
static ResultCode SetHeapSize(VAddr* heap_addr, u64 heap_size) {
NGLOG_TRACE(Kernel_SVC, "called, heap_size=0x{:X}", heap_size);
auto& process = *Core::CurrentProcess();
CASCADE_RESULT(*heap_addr,
process.HeapAllocate(Memory::HEAP_VADDR, heap_size, VMAPermission::ReadWrite));
return RESULT_SUCCESS;
}
static ResultCode SetMemoryAttribute(VAddr addr, u64 size, u32 state0, u32 state1) {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called, addr=0x{:X}", addr);
return RESULT_SUCCESS;
}
/// Maps a memory range into a different range.
static ResultCode MapMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
NGLOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
src_addr, size);
return Core::CurrentProcess()->MirrorMemory(dst_addr, src_addr, size);
}
/// Unmaps a region that was previously mapped with svcMapMemory
static ResultCode UnmapMemory(VAddr dst_addr, VAddr src_addr, u64 size) {
NGLOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
src_addr, size);
return Core::CurrentProcess()->UnmapMemory(dst_addr, src_addr, size);
}
/// Connect to an OS service given the port name, returns the handle to the port to out
static ResultCode ConnectToNamedPort(Handle* out_handle, VAddr port_name_address) {
if (!Memory::IsValidVirtualAddress(port_name_address))
return ERR_NOT_FOUND;
static constexpr std::size_t PortNameMaxLength = 11;
// Read 1 char beyond the max allowed port name to detect names that are too long.
std::string port_name = Memory::ReadCString(port_name_address, PortNameMaxLength + 1);
if (port_name.size() > PortNameMaxLength)
return ERR_PORT_NAME_TOO_LONG;
NGLOG_TRACE(Kernel_SVC, "called port_name={}", port_name);
auto it = Service::g_kernel_named_ports.find(port_name);
if (it == Service::g_kernel_named_ports.end()) {
NGLOG_WARNING(Kernel_SVC, "tried to connect to unknown port: {}", port_name);
return ERR_NOT_FOUND;
}
auto client_port = it->second;
SharedPtr<ClientSession> client_session;
CASCADE_RESULT(client_session, client_port->Connect());
// Return the client session
CASCADE_RESULT(*out_handle, g_handle_table.Create(client_session));
return RESULT_SUCCESS;
}
/// Makes a blocking IPC call to an OS service.
static ResultCode SendSyncRequest(Handle handle) {
SharedPtr<ClientSession> session = g_handle_table.Get<ClientSession>(handle);
if (!session) {
NGLOG_ERROR(Kernel_SVC, "called with invalid handle=0x{:08X}", handle);
return ERR_INVALID_HANDLE;
}
NGLOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName());
Core::System::GetInstance().PrepareReschedule();
// TODO(Subv): svcSendSyncRequest should put the caller thread to sleep while the server
// responds and cause a reschedule.
return session->SendSyncRequest(GetCurrentThread());
}
/// Get the ID for the specified thread.
static ResultCode GetThreadId(u32* thread_id, Handle thread_handle) {
NGLOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle);
const SharedPtr<Thread> thread = g_handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
*thread_id = thread->GetThreadId();
return RESULT_SUCCESS;
}
/// Get the ID of the specified process
static ResultCode GetProcessId(u32* process_id, Handle process_handle) {
NGLOG_TRACE(Kernel_SVC, "called process=0x{:08X}", process_handle);
const SharedPtr<Process> process = g_handle_table.Get<Process>(process_handle);
if (!process) {
return ERR_INVALID_HANDLE;
}
*process_id = process->process_id;
return RESULT_SUCCESS;
}
/// Default thread wakeup callback for WaitSynchronization
static bool DefaultThreadWakeupCallback(ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object, size_t index) {
ASSERT(thread->status == THREADSTATUS_WAIT_SYNCH_ANY);
if (reason == ThreadWakeupReason::Timeout) {
thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
return true;
}
ASSERT(reason == ThreadWakeupReason::Signal);
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
thread->SetWaitSynchronizationOutput(static_cast<u32>(index));
return true;
};
/// Wait for a kernel object to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization1(
SharedPtr<WaitObject> object, Thread* thread, s64 nano_seconds = -1,
std::function<Thread::WakeupCallback> wakeup_callback = DefaultThreadWakeupCallback) {
if (!object) {
return ERR_INVALID_HANDLE;
}
if (object->ShouldWait(thread)) {
if (nano_seconds == 0) {
return RESULT_TIMEOUT;
}
thread->wait_objects = {object};
object->AddWaitingThread(thread);
thread->status = THREADSTATUS_WAIT_SYNCH_ANY;
// Create an event to wake the thread up after the specified nanosecond delay has passed
thread->WakeAfterDelay(nano_seconds);
thread->wakeup_callback = wakeup_callback;
Core::System::GetInstance().PrepareReschedule();
} else {
object->Acquire(thread);
}
return RESULT_SUCCESS;
}
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization(Handle* index, VAddr handles_address, u64 handle_count,
s64 nano_seconds) {
NGLOG_TRACE(Kernel_SVC, "called handles_address=0x{:X}, handle_count={}, nano_seconds={}",
handles_address, handle_count, nano_seconds);
if (!Memory::IsValidVirtualAddress(handles_address))
return ERR_INVALID_POINTER;
static constexpr u64 MaxHandles = 0x40;
if (handle_count > MaxHandles)
return ResultCode(ErrorModule::Kernel, ErrCodes::TooLarge);
auto thread = GetCurrentThread();
using ObjectPtr = SharedPtr<WaitObject>;
std::vector<ObjectPtr> objects(handle_count);
for (int i = 0; i < handle_count; ++i) {
Handle handle = Memory::Read32(handles_address + i * sizeof(Handle));
auto object = g_handle_table.Get<WaitObject>(handle);
if (object == nullptr)
return ERR_INVALID_HANDLE;
objects[i] = object;
}
// Find the first object that is acquirable in the provided list of objects
auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) {
return !object->ShouldWait(thread);
});
if (itr != objects.end()) {
// We found a ready object, acquire it and set the result value
WaitObject* object = itr->get();
object->Acquire(thread);
*index = static_cast<s32>(std::distance(objects.begin(), itr));
return RESULT_SUCCESS;
}
// No objects were ready to be acquired, prepare to suspend the thread.
// If a timeout value of 0 was provided, just return the Timeout error code instead of
// suspending the thread.
if (nano_seconds == 0)
return RESULT_TIMEOUT;
for (auto& object : objects)
object->AddWaitingThread(thread);
thread->wait_objects = std::move(objects);
thread->status = THREADSTATUS_WAIT_SYNCH_ANY;
// Create an event to wake the thread up after the specified nanosecond delay has passed
thread->WakeAfterDelay(nano_seconds);
thread->wakeup_callback = DefaultThreadWakeupCallback;
Core::System::GetInstance().PrepareReschedule();
return RESULT_TIMEOUT;
}
/// Resumes a thread waiting on WaitSynchronization
static ResultCode CancelSynchronization(Handle thread_handle) {
NGLOG_TRACE(Kernel_SVC, "called thread=0x{:X}", thread_handle);
const SharedPtr<Thread> thread = g_handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
ASSERT(thread->status == THREADSTATUS_WAIT_SYNCH_ANY);
thread->SetWaitSynchronizationResult(
ResultCode(ErrorModule::Kernel, ErrCodes::SynchronizationCanceled));
thread->ResumeFromWait();
return RESULT_SUCCESS;
}
/// Attempts to locks a mutex, creating it if it does not already exist
static ResultCode ArbitrateLock(Handle holding_thread_handle, VAddr mutex_addr,
Handle requesting_thread_handle) {
NGLOG_TRACE(Kernel_SVC,
"called holding_thread_handle=0x{:08X}, mutex_addr=0x{:X}, "
"requesting_current_thread_handle=0x{:08X}",
holding_thread_handle, mutex_addr, requesting_thread_handle);
return Mutex::TryAcquire(mutex_addr, holding_thread_handle, requesting_thread_handle);
}
/// Unlock a mutex
static ResultCode ArbitrateUnlock(VAddr mutex_addr) {
NGLOG_TRACE(Kernel_SVC, "called mutex_addr=0x{:X}", mutex_addr);
return Mutex::Release(mutex_addr);
}
/// Break program execution
static void Break(u64 unk_0, u64 unk_1, u64 unk_2) {
NGLOG_CRITICAL(Debug_Emulated, "Emulated program broke execution!");
ASSERT(false);
}
/// Used to output a message on a debug hardware unit - does nothing on a retail unit
static void OutputDebugString(VAddr address, s32 len) {
std::string str(len, '\0');
Memory::ReadBlock(address, str.data(), str.size());
NGLOG_DEBUG(Debug_Emulated, "{}", str);
}
/// Gets system/memory information for the current process
static ResultCode GetInfo(u64* result, u64 info_id, u64 handle, u64 info_sub_id) {
NGLOG_TRACE(Kernel_SVC, "called info_id=0x{:X}, info_sub_id=0x{:X}, handle=0x{:08X}", info_id,
info_sub_id, handle);
auto& vm_manager = Core::CurrentProcess()->vm_manager;
switch (static_cast<GetInfoType>(info_id)) {
case GetInfoType::AllowedCpuIdBitmask:
*result = Core::CurrentProcess()->allowed_processor_mask;
break;
case GetInfoType::AllowedThreadPrioBitmask:
*result = Core::CurrentProcess()->allowed_thread_priority_mask;
break;
case GetInfoType::MapRegionBaseAddr:
*result = Memory::MAP_REGION_VADDR;
break;
case GetInfoType::MapRegionSize:
*result = Memory::MAP_REGION_SIZE;
break;
case GetInfoType::HeapRegionBaseAddr:
*result = Memory::HEAP_VADDR;
break;
case GetInfoType::HeapRegionSize:
*result = Memory::HEAP_SIZE;
break;
case GetInfoType::TotalMemoryUsage:
*result = vm_manager.GetTotalMemoryUsage();
break;
case GetInfoType::TotalHeapUsage:
*result = vm_manager.GetTotalHeapUsage();
break;
case GetInfoType::IsCurrentProcessBeingDebugged:
*result = 0;
break;
case GetInfoType::RandomEntropy:
*result = 0;
break;
case GetInfoType::AddressSpaceBaseAddr:
*result = vm_manager.GetAddressSpaceBaseAddr();
break;
case GetInfoType::AddressSpaceSize:
*result = vm_manager.GetAddressSpaceSize();
break;
case GetInfoType::NewMapRegionBaseAddr:
*result = Memory::NEW_MAP_REGION_VADDR;
break;
case GetInfoType::NewMapRegionSize:
*result = Memory::NEW_MAP_REGION_SIZE;
break;
case GetInfoType::IsVirtualAddressMemoryEnabled:
*result = Core::CurrentProcess()->is_virtual_address_memory_enabled;
break;
case GetInfoType::TitleId:
NGLOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query titleid, returned 0");
*result = 0;
break;
case GetInfoType::PrivilegedProcessId:
NGLOG_WARNING(Kernel_SVC,
"(STUBBED) Attempted to query privileged process id bounds, returned 0");
*result = 0;
break;
default:
UNIMPLEMENTED();
}
return RESULT_SUCCESS;
}
/// Sets the thread activity
static ResultCode SetThreadActivity(Handle handle, u32 unknown) {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called, handle=0x{:08X}, unknown=0x{:08X}", handle,
unknown);
return RESULT_SUCCESS;
}
/// Gets the thread context
static ResultCode GetThreadContext(Handle handle, VAddr addr) {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called, handle=0x{:08X}, addr=0x{:X}", handle, addr);
return RESULT_SUCCESS;
}
/// Gets the priority for the specified thread
static ResultCode GetThreadPriority(u32* priority, Handle handle) {
const SharedPtr<Thread> thread = g_handle_table.Get<Thread>(handle);
if (!thread)
return ERR_INVALID_HANDLE;
*priority = thread->GetPriority();
return RESULT_SUCCESS;
}
/// Sets the priority for the specified thread
static ResultCode SetThreadPriority(Handle handle, u32 priority) {
if (priority > THREADPRIO_LOWEST) {
return ERR_OUT_OF_RANGE;
}
SharedPtr<Thread> thread = g_handle_table.Get<Thread>(handle);
if (!thread)
return ERR_INVALID_HANDLE;
// Note: The kernel uses the current process's resource limit instead of
// the one from the thread owner's resource limit.
SharedPtr<ResourceLimit>& resource_limit = Core::CurrentProcess()->resource_limit;
if (resource_limit->GetMaxResourceValue(ResourceType::Priority) > priority) {
return ERR_NOT_AUTHORIZED;
}
thread->SetPriority(priority);
Core::System::GetInstance().PrepareReschedule();
return RESULT_SUCCESS;
}
/// Get which CPU core is executing the current thread
static u32 GetCurrentProcessorNumber() {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called, defaulting to processor 0");
return 0;
}
static ResultCode MapSharedMemory(Handle shared_memory_handle, VAddr addr, u64 size,
u32 permissions) {
NGLOG_TRACE(
Kernel_SVC,
"called, shared_memory_handle=0x{:X}, addr=0x{:X}, size=0x{:X}, permissions=0x{:08X}",
shared_memory_handle, addr, size, permissions);
SharedPtr<SharedMemory> shared_memory = g_handle_table.Get<SharedMemory>(shared_memory_handle);
if (!shared_memory) {
return ERR_INVALID_HANDLE;
}
MemoryPermission permissions_type = static_cast<MemoryPermission>(permissions);
switch (permissions_type) {
case MemoryPermission::Read:
case MemoryPermission::Write:
case MemoryPermission::ReadWrite:
case MemoryPermission::Execute:
case MemoryPermission::ReadExecute:
case MemoryPermission::WriteExecute:
case MemoryPermission::ReadWriteExecute:
case MemoryPermission::DontCare:
return shared_memory->Map(Core::CurrentProcess().get(), addr, permissions_type,
MemoryPermission::DontCare);
default:
NGLOG_ERROR(Kernel_SVC, "unknown permissions=0x{:08X}", permissions);
}
return RESULT_SUCCESS;
}
static ResultCode UnmapSharedMemory(Handle shared_memory_handle, VAddr addr, u64 size) {
NGLOG_WARNING(Kernel_SVC, "called, shared_memory_handle=0x{:08X}, addr=0x{:X}, size=0x{:X}",
shared_memory_handle, addr, size);
SharedPtr<SharedMemory> shared_memory = g_handle_table.Get<SharedMemory>(shared_memory_handle);
return shared_memory->Unmap(Core::CurrentProcess().get(), addr);
}
/// Query process memory
static ResultCode QueryProcessMemory(MemoryInfo* memory_info, PageInfo* /*page_info*/,
Handle process_handle, u64 addr) {
SharedPtr<Process> process = g_handle_table.Get<Process>(process_handle);
if (!process) {
return ERR_INVALID_HANDLE;
}
auto vma = process->vm_manager.FindVMA(addr);
memory_info->attributes = 0;
if (vma == Core::CurrentProcess()->vm_manager.vma_map.end()) {
memory_info->base_address = 0;
memory_info->permission = static_cast<u32>(VMAPermission::None);
memory_info->size = 0;
memory_info->type = static_cast<u32>(MemoryState::Unmapped);
} else {
memory_info->base_address = vma->second.base;
memory_info->permission = static_cast<u32>(vma->second.permissions);
memory_info->size = vma->second.size;
memory_info->type = static_cast<u32>(vma->second.meminfo_state);
}
NGLOG_TRACE(Kernel_SVC, "called process=0x{:08X} addr={:X}", process_handle, addr);
return RESULT_SUCCESS;
}
/// Query memory
static ResultCode QueryMemory(MemoryInfo* memory_info, PageInfo* page_info, VAddr addr) {
NGLOG_TRACE(Kernel_SVC, "called, addr={:X}", addr);
return QueryProcessMemory(memory_info, page_info, CurrentProcess, addr);
}
/// Exits the current process
static void ExitProcess() {
NGLOG_INFO(Kernel_SVC, "Process {} exiting", Core::CurrentProcess()->process_id);
ASSERT_MSG(Core::CurrentProcess()->status == ProcessStatus::Running,
"Process has already exited");
Core::CurrentProcess()->status = ProcessStatus::Exited;
// Stop all the process threads that are currently waiting for objects.
auto& thread_list = Core::System::GetInstance().Scheduler().GetThreadList();
for (auto& thread : thread_list) {
if (thread->owner_process != Core::CurrentProcess())
continue;
if (thread == GetCurrentThread())
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->status == THREADSTATUS_WAIT_SYNCH_ANY ||
thread->status == THREADSTATUS_WAIT_SYNCH_ALL,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Stop();
}
// Kill the current thread
GetCurrentThread()->Stop();
Core::System::GetInstance().PrepareReschedule();
}
/// Creates a new thread
static ResultCode CreateThread(Handle* out_handle, VAddr entry_point, u64 arg, VAddr stack_top,
u32 priority, s32 processor_id) {
std::string name = fmt::format("unknown-{:X}", entry_point);
if (priority > THREADPRIO_LOWEST) {
return ERR_OUT_OF_RANGE;
}
SharedPtr<ResourceLimit>& resource_limit = Core::CurrentProcess()->resource_limit;
if (resource_limit->GetMaxResourceValue(ResourceType::Priority) > priority) {
return ERR_NOT_AUTHORIZED;
}
if (processor_id == THREADPROCESSORID_DEFAULT) {
// Set the target CPU to the one specified in the process' exheader.
processor_id = Core::CurrentProcess()->ideal_processor;
ASSERT(processor_id != THREADPROCESSORID_DEFAULT);
}
switch (processor_id) {
case THREADPROCESSORID_0:
break;
case THREADPROCESSORID_1:
case THREADPROCESSORID_2:
case THREADPROCESSORID_3:
// TODO(bunnei): Implement support for other processor IDs
NGLOG_ERROR(Kernel_SVC,
"Newly created thread must run in another thread ({}), unimplemented.",
processor_id);
break;
default:
ASSERT_MSG(false, "Unsupported thread processor ID: {}", processor_id);
break;
}
CASCADE_RESULT(SharedPtr<Thread> thread,
Thread::Create(name, entry_point, priority, arg, processor_id, stack_top,
Core::CurrentProcess()));
CASCADE_RESULT(thread->guest_handle, g_handle_table.Create(thread));
*out_handle = thread->guest_handle;
Core::System::GetInstance().PrepareReschedule();
NGLOG_TRACE(Kernel_SVC,
"called entrypoint=0x{:08X} ({}), arg=0x{:08X}, stacktop=0x{:08X}, "
"threadpriority=0x{:08X}, processorid=0x{:08X} : created handle=0x{:08X}",
entry_point, name, arg, stack_top, priority, processor_id, *out_handle);
return RESULT_SUCCESS;
}
/// Starts the thread for the provided handle
static ResultCode StartThread(Handle thread_handle) {
NGLOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle);
const SharedPtr<Thread> thread = g_handle_table.Get<Thread>(thread_handle);
if (!thread) {
return ERR_INVALID_HANDLE;
}
thread->ResumeFromWait();
return RESULT_SUCCESS;
}
/// Called when a thread exits
static void ExitThread() {
NGLOG_TRACE(Kernel_SVC, "called, pc=0x{:08X}", Core::CPU().GetPC());
ExitCurrentThread();
Core::System::GetInstance().PrepareReschedule();
}
/// Sleep the current thread
static void SleepThread(s64 nanoseconds) {
NGLOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds);
// Don't attempt to yield execution if there are no available threads to run,
// this way we avoid a useless reschedule to the idle thread.
if (nanoseconds == 0 && !Core::System::GetInstance().Scheduler().HaveReadyThreads())
return;
// Sleep current thread and check for next thread to schedule
WaitCurrentThread_Sleep();
// Create an event to wake the thread up after the specified nanosecond delay has passed
GetCurrentThread()->WakeAfterDelay(nanoseconds);
Core::System::GetInstance().PrepareReschedule();
}
/// Signal process wide key atomic
static ResultCode WaitProcessWideKeyAtomic(VAddr mutex_addr, VAddr condition_variable_addr,
Handle thread_handle, s64 nano_seconds) {
NGLOG_TRACE(
Kernel_SVC,
"called mutex_addr={:X}, condition_variable_addr={:X}, thread_handle=0x{:08X}, timeout={}",
mutex_addr, condition_variable_addr, thread_handle, nano_seconds);
SharedPtr<Thread> thread = g_handle_table.Get<Thread>(thread_handle);
ASSERT(thread);
CASCADE_CODE(Mutex::Release(mutex_addr));
SharedPtr<Thread> current_thread = GetCurrentThread();
current_thread->condvar_wait_address = condition_variable_addr;
current_thread->mutex_wait_address = mutex_addr;
current_thread->wait_handle = thread_handle;
current_thread->status = THREADSTATUS_WAIT_MUTEX;
current_thread->wakeup_callback = nullptr;
current_thread->WakeAfterDelay(nano_seconds);
// Note: Deliberately don't attempt to inherit the lock owner's priority.
Core::System::GetInstance().PrepareReschedule();
return RESULT_SUCCESS;
}
/// Signal process wide key
static ResultCode SignalProcessWideKey(VAddr condition_variable_addr, s32 target) {
NGLOG_TRACE(Kernel_SVC, "called, condition_variable_addr=0x{:X}, target=0x{:08X}",
condition_variable_addr, target);
u32 processed = 0;
auto& thread_list = Core::System::GetInstance().Scheduler().GetThreadList();
for (auto& thread : thread_list) {
if (thread->condvar_wait_address != condition_variable_addr)
continue;
// Only process up to 'target' threads, unless 'target' is -1, in which case process
// them all.
if (target != -1 && processed >= target)
break;
// If the mutex is not yet acquired, acquire it.
u32 mutex_val = Memory::Read32(thread->mutex_wait_address);
if (mutex_val == 0) {
// We were able to acquire the mutex, resume this thread.
Memory::Write32(thread->mutex_wait_address, thread->wait_handle);
ASSERT(thread->status == THREADSTATUS_WAIT_MUTEX);
thread->ResumeFromWait();
auto lock_owner = thread->lock_owner;
if (lock_owner)
lock_owner->RemoveMutexWaiter(thread);
thread->lock_owner = nullptr;
thread->mutex_wait_address = 0;
thread->condvar_wait_address = 0;
thread->wait_handle = 0;
} else {
// Couldn't acquire the mutex, block the thread.
Handle owner_handle = static_cast<Handle>(mutex_val & Mutex::MutexOwnerMask);
auto owner = g_handle_table.Get<Thread>(owner_handle);
ASSERT(owner);
ASSERT(thread->status != THREADSTATUS_RUNNING);
thread->status = THREADSTATUS_WAIT_MUTEX;
thread->wakeup_callback = nullptr;
// Signal that the mutex now has a waiting thread.
Memory::Write32(thread->mutex_wait_address, mutex_val | Mutex::MutexHasWaitersFlag);
owner->AddMutexWaiter(thread);
Core::System::GetInstance().PrepareReschedule();
}
++processed;
}
return RESULT_SUCCESS;
}
/// This returns the total CPU ticks elapsed since the CPU was powered-on
static u64 GetSystemTick() {
const u64 result{CoreTiming::GetTicks()};
// Advance time to defeat dumb games that busy-wait for the frame to end.
CoreTiming::AddTicks(400);
return result;
}
/// Close a handle
static ResultCode CloseHandle(Handle handle) {
NGLOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle);
return g_handle_table.Close(handle);
}
/// Reset an event
static ResultCode ResetSignal(Handle handle) {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called handle 0x{:08X}", handle);
auto event = g_handle_table.Get<Event>(handle);
ASSERT(event != nullptr);
event->Clear();
return RESULT_SUCCESS;
}
/// Creates a TransferMemory object
static ResultCode CreateTransferMemory(Handle* handle, VAddr addr, u64 size, u32 permissions) {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called addr=0x{:X}, size=0x{:X}, perms=0x{:08X}", addr,
size, permissions);
*handle = 0;
return RESULT_SUCCESS;
}
static ResultCode GetThreadCoreMask(Handle handle, u32* mask, u64* unknown) {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called, handle=0x{:08X}", handle);
*mask = 0x0;
*unknown = 0xf;
return RESULT_SUCCESS;
}
static ResultCode SetThreadCoreMask(Handle handle, u32 mask, u64 unknown) {
NGLOG_WARNING(Kernel_SVC, "(STUBBED) called, handle=0x{:08X}, mask=0x{:08X}, unknown=0x{:X}",
handle, mask, unknown);
return RESULT_SUCCESS;
}
static ResultCode CreateSharedMemory(Handle* handle, u64 size, u32 local_permissions,
u32 remote_permissions) {
NGLOG_TRACE(Kernel_SVC, "called, size=0x{:X}, localPerms=0x{:08X}, remotePerms=0x{:08X}", size,
local_permissions, remote_permissions);
auto sharedMemHandle =
SharedMemory::Create(g_handle_table.Get<Process>(KernelHandle::CurrentProcess), size,
static_cast<MemoryPermission>(local_permissions),
static_cast<MemoryPermission>(remote_permissions));
CASCADE_RESULT(*handle, g_handle_table.Create(sharedMemHandle));
return RESULT_SUCCESS;
}
static ResultCode ClearEvent(Handle handle) {
NGLOG_TRACE(Kernel_SVC, "called, event=0x{:08X}", handle);
SharedPtr<Event> evt = g_handle_table.Get<Event>(handle);
if (evt == nullptr)
return ERR_INVALID_HANDLE;
evt->Clear();
return RESULT_SUCCESS;
}
namespace {
struct FunctionDef {
using Func = void();
u32 id;
Func* func;
const char* name;
};
} // namespace
static const FunctionDef SVC_Table[] = {
{0x00, nullptr, "Unknown"},
{0x01, SvcWrap<SetHeapSize>, "SetHeapSize"},
{0x02, nullptr, "SetMemoryPermission"},
{0x03, SvcWrap<SetMemoryAttribute>, "SetMemoryAttribute"},
{0x04, SvcWrap<MapMemory>, "MapMemory"},
{0x05, SvcWrap<UnmapMemory>, "UnmapMemory"},
{0x06, SvcWrap<QueryMemory>, "QueryMemory"},
{0x07, SvcWrap<ExitProcess>, "ExitProcess"},
{0x08, SvcWrap<CreateThread>, "CreateThread"},
{0x09, SvcWrap<StartThread>, "StartThread"},
{0x0A, SvcWrap<ExitThread>, "ExitThread"},
{0x0B, SvcWrap<SleepThread>, "SleepThread"},
{0x0C, SvcWrap<GetThreadPriority>, "GetThreadPriority"},
{0x0D, SvcWrap<SetThreadPriority>, "SetThreadPriority"},
{0x0E, SvcWrap<GetThreadCoreMask>, "GetThreadCoreMask"},
{0x0F, SvcWrap<SetThreadCoreMask>, "SetThreadCoreMask"},
{0x10, SvcWrap<GetCurrentProcessorNumber>, "GetCurrentProcessorNumber"},
{0x11, nullptr, "SignalEvent"},
{0x12, SvcWrap<ClearEvent>, "ClearEvent"},
{0x13, SvcWrap<MapSharedMemory>, "MapSharedMemory"},
{0x14, SvcWrap<UnmapSharedMemory>, "UnmapSharedMemory"},
{0x15, SvcWrap<CreateTransferMemory>, "CreateTransferMemory"},
{0x16, SvcWrap<CloseHandle>, "CloseHandle"},
{0x17, SvcWrap<ResetSignal>, "ResetSignal"},
{0x18, SvcWrap<WaitSynchronization>, "WaitSynchronization"},
{0x19, SvcWrap<CancelSynchronization>, "CancelSynchronization"},
{0x1A, SvcWrap<ArbitrateLock>, "ArbitrateLock"},
{0x1B, SvcWrap<ArbitrateUnlock>, "ArbitrateUnlock"},
{0x1C, SvcWrap<WaitProcessWideKeyAtomic>, "WaitProcessWideKeyAtomic"},
{0x1D, SvcWrap<SignalProcessWideKey>, "SignalProcessWideKey"},
{0x1E, SvcWrap<GetSystemTick>, "GetSystemTick"},
{0x1F, SvcWrap<ConnectToNamedPort>, "ConnectToNamedPort"},
{0x20, nullptr, "SendSyncRequestLight"},
{0x21, SvcWrap<SendSyncRequest>, "SendSyncRequest"},
{0x22, nullptr, "SendSyncRequestWithUserBuffer"},
{0x23, nullptr, "SendAsyncRequestWithUserBuffer"},
{0x24, SvcWrap<GetProcessId>, "GetProcessId"},
{0x25, SvcWrap<GetThreadId>, "GetThreadId"},
{0x26, SvcWrap<Break>, "Break"},
{0x27, SvcWrap<OutputDebugString>, "OutputDebugString"},
{0x28, nullptr, "ReturnFromException"},
{0x29, SvcWrap<GetInfo>, "GetInfo"},
{0x2A, nullptr, "FlushEntireDataCache"},
{0x2B, nullptr, "FlushDataCache"},
{0x2C, nullptr, "MapPhysicalMemory"},
{0x2D, nullptr, "UnmapPhysicalMemory"},
{0x2E, nullptr, "GetNextThreadInfo"},
{0x2F, nullptr, "GetLastThreadInfo"},
{0x30, nullptr, "GetResourceLimitLimitValue"},
{0x31, nullptr, "GetResourceLimitCurrentValue"},
{0x32, SvcWrap<SetThreadActivity>, "SetThreadActivity"},
{0x33, SvcWrap<GetThreadContext>, "GetThreadContext"},
{0x34, nullptr, "WaitForAddress"},
{0x35, nullptr, "SignalToAddress"},
{0x36, nullptr, "Unknown"},
{0x37, nullptr, "Unknown"},
{0x38, nullptr, "Unknown"},
{0x39, nullptr, "Unknown"},
{0x3A, nullptr, "Unknown"},
{0x3B, nullptr, "Unknown"},
{0x3C, nullptr, "DumpInfo"},
{0x3D, nullptr, "DumpInfoNew"},
{0x3E, nullptr, "Unknown"},
{0x3F, nullptr, "Unknown"},
{0x40, nullptr, "CreateSession"},
{0x41, nullptr, "AcceptSession"},
{0x42, nullptr, "ReplyAndReceiveLight"},
{0x43, nullptr, "ReplyAndReceive"},
{0x44, nullptr, "ReplyAndReceiveWithUserBuffer"},
{0x45, nullptr, "CreateEvent"},
{0x46, nullptr, "Unknown"},
{0x47, nullptr, "Unknown"},
{0x48, nullptr, "AllocateUnsafeMemory"},
{0x49, nullptr, "FreeUnsafeMemory"},
{0x4A, nullptr, "SetUnsafeAllocationLimit"},
{0x4B, nullptr, "CreateJitMemory"},
{0x4C, nullptr, "MapJitMemory"},
{0x4D, nullptr, "SleepSystem"},
{0x4E, nullptr, "ReadWriteRegister"},
{0x4F, nullptr, "SetProcessActivity"},
{0x50, SvcWrap<CreateSharedMemory>, "CreateSharedMemory"},
{0x51, nullptr, "MapTransferMemory"},
{0x52, nullptr, "UnmapTransferMemory"},
{0x53, nullptr, "CreateInterruptEvent"},
{0x54, nullptr, "QueryPhysicalAddress"},
{0x55, nullptr, "QueryIoMapping"},
{0x56, nullptr, "CreateDeviceAddressSpace"},
{0x57, nullptr, "AttachDeviceAddressSpace"},
{0x58, nullptr, "DetachDeviceAddressSpace"},
{0x59, nullptr, "MapDeviceAddressSpaceByForce"},
{0x5A, nullptr, "MapDeviceAddressSpaceAligned"},
{0x5B, nullptr, "MapDeviceAddressSpace"},
{0x5C, nullptr, "UnmapDeviceAddressSpace"},
{0x5D, nullptr, "InvalidateProcessDataCache"},
{0x5E, nullptr, "StoreProcessDataCache"},
{0x5F, nullptr, "FlushProcessDataCache"},
{0x60, nullptr, "DebugActiveProcess"},
{0x61, nullptr, "BreakDebugProcess"},
{0x62, nullptr, "TerminateDebugProcess"},
{0x63, nullptr, "GetDebugEvent"},
{0x64, nullptr, "ContinueDebugEvent"},
{0x65, nullptr, "GetProcessList"},
{0x66, nullptr, "GetThreadList"},
{0x67, nullptr, "GetDebugThreadContext"},
{0x68, nullptr, "SetDebugThreadContext"},
{0x69, nullptr, "QueryDebugProcessMemory"},
{0x6A, nullptr, "ReadDebugProcessMemory"},
{0x6B, nullptr, "WriteDebugProcessMemory"},
{0x6C, nullptr, "SetHardwareBreakPoint"},
{0x6D, nullptr, "GetDebugThreadParam"},
{0x6E, nullptr, "Unknown"},
{0x6F, nullptr, "GetMemoryInfo"},
{0x70, nullptr, "CreatePort"},
{0x71, nullptr, "ManageNamedPort"},
{0x72, nullptr, "ConnectToPort"},
{0x73, nullptr, "SetProcessMemoryPermission"},
{0x74, nullptr, "MapProcessMemory"},
{0x75, nullptr, "UnmapProcessMemory"},
{0x76, nullptr, "QueryProcessMemory"},
{0x77, nullptr, "MapProcessCodeMemory"},
{0x78, nullptr, "UnmapProcessCodeMemory"},
{0x79, nullptr, "CreateProcess"},
{0x7A, nullptr, "StartProcess"},
{0x7B, nullptr, "TerminateProcess"},
{0x7C, nullptr, "GetProcessInfo"},
{0x7D, nullptr, "CreateResourceLimit"},
{0x7E, nullptr, "SetResourceLimitLimitValue"},
{0x7F, nullptr, "CallSecureMonitor"},
};
static const FunctionDef* GetSVCInfo(u32 func_num) {
if (func_num >= std::size(SVC_Table)) {
NGLOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num);
return nullptr;
}
return &SVC_Table[func_num];
}
MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
void CallSVC(u32 immediate) {
MICROPROFILE_SCOPE(Kernel_SVC);
// Lock the global kernel mutex when we enter the kernel HLE.
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
const FunctionDef* info = GetSVCInfo(immediate);
if (info) {
if (info->func) {
info->func();
} else {
NGLOG_CRITICAL(Kernel_SVC, "Unimplemented SVC function {}(..)", info->name);
}
} else {
NGLOG_CRITICAL(Kernel_SVC, "Unknown SVC function 0x{:X}", immediate);
}
}
} // namespace Kernel